CEA
CNRS
Univ. Paris-Saclay

Service de Physique de l'Etat Condensé

Les sujets de thèses

3 sujets IRAMIS//SPEC

Dernière mise à jour :


««

• Physique du solide, surfaces et interfaces

 

Cartographie de la polarisation électrique dans des dispositifs ferroélectriques à l’échelle nanométrique

SL-DRF-24-0735

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Jean-Baptiste MOUSSY

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Jean-Baptiste MOUSSY
CEA - DRF/IRAMIS

01-69-08-72-17

Directeur de thèse :

Jean-Baptiste MOUSSY
CEA - DRF/IRAMIS

01-69-08-72-17

Page perso : https://iramis.cea.fr/Pisp/jean-baptiste.moussy/

Labo : https://iramis.cea.fr/spec/lno/

Les matériaux ferroélectriques, avec leur forte constante diélectrique et leur polarisation spontanée, font l'objet de recherches intenses en microélectronique. La polarisation est un paramètre essentiel pour ces matériaux alors que sa caractérisation reste majoritairement limitée à l’échelle macroscopique par des méthodes électriques classiques. Pour approfondir la compréhension de ces matériaux, en particulier en couches minces, et créer de nouveaux dispositifs, des mesures locales sont indispensables. Ce projet de thèse vise à développer une nouvelle méthodologie pour cartographier directement la polarisation dans des dispositifs à l'échelle nanométrique. En combinant l'expertise des équipes du SPEC dans la croissance de matériaux en couches minces et du C2N dans la nanostructuration et les mesures électriques, nous allons élaborer et concevoir une géométrie particulière de nanostructures permettant d’utiliser en particulier l'holographie électronique operando (collaboration avec le CEMES-CNRS, ANR POLARYS) pour cartographier quantitativement le potentiel électrique local dans les nanodispositifs lors de l'application d'une tension.
Fonctionnalité multi-niveau dans les couches minces ferroélectriques à base de HfO2 pour des applications de logique et de mémoire à l’edge

SL-DRF-24-0639

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire d’Etude des NanoStructures et Imagerie de Surface (LENSIS)

Saclay

Contact :

NiCK BARRETT

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

NiCK BARRETT
CEA - DRF/IRAMIS/SPEC/LENSIS

0169083272

Directeur de thèse :

NiCK BARRETT
CEA - DRF/IRAMIS/SPEC/LENSIS

0169083272

Page perso : https://iramis.cea.fr/Pisp/87/nick.barrett.html

Labo : https://www.lensislab.com/

Voir aussi : https://www.lensislab.com/projects

La transition numérique vers une économie plus attractive et plus soutenable s’appuie sur la recherche sur les technologies digitales du futur.

Grâce à sa non-volatilité, sa compatibilité CMOS et à son potentiel de mise à l’échelle et d’intégration 3D, les technologies émergentes de mémoires et de logique basées ferroélectricité dans le HfO2 constituent une révolution d’un point de vue applicatif. Par exemple, par rapport aux technologies Flash, résistive ou changement de phase, les mémoires ferroélectriques sont intrinsèquement de basse consommation d’énergie.

Le dispositif au cœur du projet est le FeFET-2 qui consiste en un condensateur ferroélectrique en série avec la grille d’un transistor CMOS. Ces dispositifs combinent d’excellentes métriques d’endurance, consommation d’énergie, rétention et la plasticité d’une réponse quasi-analogue.

Le travail de thèse utilisera les techniques de caractérisation avancée, notamment la spectroscopie et la microscopie en photoémission pour établir les liens entre les propriétés des matériaux et les performances électriques de FeCAPs.

Des expériences operando en fonction du nombre de cycles et de tensions électriques appliquées et duration des pulses permettront d’explorer les corrélations entre la cinétique de l’évolution des propriétés matérielles et la réponse électrique des dispositifs.
Le travail de thèse se déroulera en étroite collaboration avec NaMLab (Dresde) et CEA-LETI (Grenoble).
Nouveaux films minces multiferroïques artificiels hybrides à base d’oxynitrures

SL-DRF-24-0474

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Antoine BARBIER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Antoine BARBIER
CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Directeur de thèse :

Antoine BARBIER
CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Page perso : https://iramis.cea.fr/Pisp/137/antoine.barbier.html

Labo : https://iramis.cea.fr/spec/LNO/

Les oxydes dopés N et/ou les oxynitrures constituent une classe de composés nouveaux et en plein essor présentant une large gamme de propriétés utilisables, en particulier pour les nouvelles technologies de production d'énergie décarbonnée ainsi que pour des capteurs multifonctionnels. Dans ce domaine de recherche, la recherche de nouveaux matériaux est particulièrement souhaitable en raison des propriétés peu satisfaisantes des matériaux actuels. L'insertion d'azote dans le réseau cristallin d'un oxyde semiconducteur permet en principe de moduler sa structure électronique et ses propriétés de transport pour obtenir de nouvelles fonctionnalités. La production de films minces monocristallins correspondants, est un défi important. Dans ce travail de thèse, des films d’oxynitrures monocristallins seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. L’hétérostructure multiferroïque combinera deux couches enrichies en azote : une couche ferroélectrique de BaTiO3 dopée N ainsi qu'une ferrite fortement dopée ferrimagnétique dont les propriétés magnétiques pourront être modulées grâce au dopage N pour obtenir de nouveaux matériaux multiferroique artificiels plus satisfaisants pour les applications. Les structures résultantes seront étudiées quant à leurs caractéristiques ferroélectriques et magnétiques ainsi que leurs couplages magnétoélectriques en fonction du dopage N. Ces observations seront corrélées à une compréhension détaillée des structures cristallines et électroniques.

Le (la) candidate abordera l’ensemble des techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures ferroélectriques et de magnétométrie, ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés.

 

Retour en haut